Functions
11 |
$\mathrm{~( Edexcel/Math~B/2016/janR/paper02/q6) }$ The two functions, f and g, are defined as $$ \text{f}:x\mapsto\frac{4}{x-1} $$ $$ \mathrm{g}:x\longmapsto3x+1 $$ (a) Write down the value of x that must be excluded from any domain of f. (b) Express the inverse function f$^{-1}$ in the form $\mathrm{f^{- 1}: x\mapsto \ldots }$ (c) Find the values of $x$ that satisfy $\mathrm{f( x) = g( x) .}$ $\begin{pmatrix}1\end{pmatrix}$ Total for question 6 is 8 Marks |
12 | (Edexcel/Math B/2016/june/paper01/q6) Given that f$(x)=3-2x$ find ff(x) in terms of $x$. Simplify your answer. ff$( x) = .......$ (Total for Question 6 is 2 marks) |
13 | $\mathrm{( Edexcel/MathB/2016/juneR/paper02/q5) }$ The functions f, g and h are defined as $f: x\mapsto \frac {1+ x}x\quad x\neq0$ $g{:}x\mapsto\frac{2}{x}\quad x\neq0$ $\mathrm{h: }x\mapsto x+ 3$ (a)(i) Express the inverse function f$^{-1}$ in the form $f^{-1}{:}x\mapsto\ldots$ (ii) State the value of $x$ which must be excluded from any domain of f $^{-1}$ (b) Solve the equation hg$( x) = 4\mathrm{f} ^{- 1}( x) $ (Total for this question is 9 marks) |
0 Comments