CIE Extended Mathematics(0580) (2017-2018) Algebra 1

 Algebra 1 (2017-2018)





























































































































































11$( 2018/$m/22/img/q9$) $
$\begin{array}{c}{'}\\{2^{p}=\frac{1}{8^{4}}}\end{array}$
 Find the value of $p.$
 $p=..................[2]$

12$(2018/\mathfrak{m}/22/\mathfrak{img}/\mathfrak{q}13)$
Solve the simultaneous equations. You must show all your working. $$2x+\frac{1}{2}y=13$$ $$3x+2y=17$$ $x=\dots\dots\dots\dots\dots$ $y=\dots\dots\dots$ .......[3]

13$( 2017/$w$/23/$img$/$q$6) $
$${\sqrt[3]{10}})^{2}=10^{p}$$
 Find the value of $p.$
 $p=...........................[1]$

14$( 2017/$w/23/img/q14$) $
Solve by factorising. $$ 3x^{2}-7x-20=0 $$ $x=..........$ or $x= ...........[3]$

15$( 2018/$s/23/img/q9$) $
Solve. $$ \frac{1-p}{3}=4 $$ $p=........................[2]$

16$( 2018/$w/23/img/q10$) $
Solve. $$3w-7=32$$  $w=............[2]$

17$( 2017/$w/41/img/q3$) $
(a) Solve. $$11x+15=3x-7$$ $x=...................[2]$

 $\mathbf{( b) }( i) \quad $Factorise.$$\quad x^2+ 9x- 22$$  ..... [2]
 $( \mathbf{ii}) \quad $Solve. $$x^{2}+9x-22=0$$  $x=...............$ or $x=...............[1]$

 (c) Rearrange $y=\frac{2(x-a)}{x}$ to make x the subject.
 $x=........................[4]$

 $( \mathbf{d} ) \quad $Simplify.$$\quad \frac {x^2- 6x}{x^2- 36}$$ $x=........................[3]$

18$( 2018/\mathrm{w/42/img/q2a) }$
$(\mathbf{a})$ Solve $$30+2x=3(3-4x).$$
 $x=..................[3]$

 (b) Factorise $$12ab^3+18a^3b^2.$$ 

(c) Simplify.
 $(\mathbf{i})\quad5a^3c^2\times2a^2c^7$ .........[2]
(ii)$\quad \left ( \frac {16a^8}{c^{12}}\right ) ^{\frac 34}$..........[2]

 (d) $y$ is inversely proportional to the square of $(x+2)$
 When $x=3,y=2.$ Find $y$ when $x=8.$
 $y=...............[3]$

 (e) Write as a single fraction in its simplest form.$\ldots\ldots[3]$ $$ \frac5{x-2}-\frac{x-5}2 $$ 

19$( 2017/$s/43/img/q7$) $
(a) Solve the simultaneous equations. You must show all your working. $\begin{array}{l}2x+3y=11\\3x-5y=-50\end{array}$
 $x=.................$ $y=...............[4]$

 $(\mathbf{b})\quad x^2-12x+a=(x+b)^2$ Find the value of $\alpha$ and the value of $b.$

 $a=\ldots$ $b=\ldots$ [3]

 (c) Write as a single fraction in its simplest form......[4]  $$ \frac x{2x-5}\:+\:\frac{3x+2}{x-1} $$ 

20 $( 2017/$s$/21/$img$/$q$5) $
Factorise completely. $$12n^2-4mn$$    $\cdot\cdot\cdot\cdot\cdot\cdot$[2]

Post a Comment

0 Comments