Algebra 1 (2017-2018)
11 | $( 2018/$m/22/img/q9$) $ $\begin{array}{c}{'}\\{2^{p}=\frac{1}{8^{4}}}\end{array}$ Find the value of $p.$ $p=..................[2]$ |
12 | $(2018/\mathfrak{m}/22/\mathfrak{img}/\mathfrak{q}13)$
Solve the simultaneous equations. You must show all your working. $$2x+\frac{1}{2}y=13$$ $$3x+2y=17$$ $x=\dots\dots\dots\dots\dots$ $y=\dots\dots\dots$ .......[3] |
13 | $( 2017/$w$/23/$img$/$q$6) $
$${\sqrt[3]{10}})^{2}=10^{p}$$ Find the value of $p.$ $p=...........................[1]$ |
14 | $( 2017/$w/23/img/q14$) $ Solve by factorising. $$ 3x^{2}-7x-20=0 $$ $x=..........$ or $x= ...........[3]$ |
15 | $( 2018/$s/23/img/q9$) $ Solve. $$ \frac{1-p}{3}=4 $$ $p=........................[2]$ |
16 | $( 2018/$w/23/img/q10$) $ Solve. $$3w-7=32$$ $w=............[2]$ |
17 | $( 2017/$w/41/img/q3$) $ (a) Solve. $$11x+15=3x-7$$ $x=...................[2]$ $\mathbf{( b) }( i) \quad $Factorise.$$\quad x^2+ 9x- 22$$ ..... [2] $( \mathbf{ii}) \quad $Solve. $$x^{2}+9x-22=0$$ $x=...............$ or $x=...............[1]$ (c) Rearrange $y=\frac{2(x-a)}{x}$ to make x the subject. $x=........................[4]$ $( \mathbf{d} ) \quad $Simplify.$$\quad \frac {x^2- 6x}{x^2- 36}$$ $x=........................[3]$ |
18 | $( 2018/\mathrm{w/42/img/q2a) }$ $(\mathbf{a})$ Solve $$30+2x=3(3-4x).$$ $x=..................[3]$ (b) Factorise $$12ab^3+18a^3b^2.$$ (c) Simplify. $(\mathbf{i})\quad5a^3c^2\times2a^2c^7$ .........[2] (ii)$\quad \left ( \frac {16a^8}{c^{12}}\right ) ^{\frac 34}$..........[2] (d) $y$ is inversely proportional to the square of $(x+2)$ When $x=3,y=2.$ Find $y$ when $x=8.$ $y=...............[3]$ (e) Write as a single fraction in its simplest form.$\ldots\ldots[3]$ $$ \frac5{x-2}-\frac{x-5}2 $$ |
19 | $( 2017/$s/43/img/q7$) $ (a) Solve the simultaneous equations. You must show all your working. $\begin{array}{l}2x+3y=11\\3x-5y=-50\end{array}$ $x=.................$ $y=...............[4]$ $(\mathbf{b})\quad x^2-12x+a=(x+b)^2$ Find the value of $\alpha$ and the value of $b.$ $a=\ldots$ $b=\ldots$ [3] (c) Write as a single fraction in its simplest form......[4] $$ \frac x{2x-5}\:+\:\frac{3x+2}{x-1} $$ |
20 |
$( 2017/$s$/21/$img$/$q$5) $ Factorise completely. $$12n^2-4mn$$ $\cdot\cdot\cdot\cdot\cdot\cdot$[2] |
0 Comments